

The Society of Thoracic Surgeons

17TH ANNUAL PERIOPERATIVE AND CRITICAL CARE

INTRODUCTION

- Chest tube drainage is an essential component of postoperative management in cardiac surgery to prevent cardiac tamponade and pleural effusion.
- **Conventional chest tubes exhibit a 36% occlusion rate** when used after cardiac surgery [1].
- Enhanced Recovery After Surgery (ERAS) Guidelines emphasize the importance of maintaining chest tube patency and avoiding manual "stripping" or "milking" of tubes [2], but few chest tube systems capable of automated line clearance are currently available.

AIM

• We assessed the safety and efficacy of an innovative chest tube system capable of active blockage detection and automated line clearance.

METHOD

- Single-center, prospective, open-label study.
- Adult patients (n=18) who underwent non-emergent, first-time isolated coronary artery bypass grafting (CABG) between 2/2019-10/2019 were consented and enrolled. These patients received only automatedclearance chest tubes in the mediastinal and pleural spaces (total n=45 automated-clearance chest tubes).
- Consecutive adult patients (n=33) who underwent the same operation performed during the months immediately preceding the study (9/2018-2/2019) served as a control group. Control patients received conventional chest tubes at the surgeon's discretion (total n=79 conventional chest tubes).
- Data presented as counts with percentages (compared using Fisher's exact test) or as median with interquartile range (compared using the Mann-Whitney test).

An Innovative Chest Tube System for Active **Blockage Detection and Automated Line Clearance** After Routine Cardiac Surgery

Department of Cardiothoracic Surgery, Stanford University, Stanford, CA

RESULTS

Table 1	Conventional n=33 patients	Automated Clearance n=18 patients	P-value
Age (years)	71.0 [64.0-76.0]	67.0 [58.0-73.0]	0.236
Male	30 (90.9%)	12 (66.7%)	0.052
Body-Mass Index (kg/m ²)	29.0 [25.3-30.3]	27.2 [24.0-32.3]	0.528
Ejection Fraction (%)	57.5 [51.9-60.0]	58.6 [45.4-65.9]	0.601
Total Bypasses	3 [2-3]	3 [2-3]	0.842
Total Chest Tubes	79	45	
Tubes Per Patient	2.0 [2.0-3.0]	2.5 [2.0-3.0]	0.597
Tube Size (Fr)	24.0 [24.0-24.0]	20.0 [20.0-20.0]	<0.001
Tube Duration (hr)	71.9 [64.1-94.5]	75.3 [65.5-86.9]	0.358
1 Hour Output (mL)	60.0 [37.0-175.0]	105.0 [70.0-200.0]	0.440
6 Hour Output (mL)	261.5 [217.5-385.0]	305.0 [155.0-470.0]	0.856
24 Hour Output (mL)	660.0 [427.5-870.0]	780.0 [450.0-1020.0]	0.271
Final Output (mL)	1040.0 [750.0-1590.0]	1330.0 [755.0-1950.0]	0.768
Takeback for Bleeding	0 (0.0%)	0 (0.0%)	N/A
Pneumothorax	0 (0.0%)	0 (0.0%)	N/A
Pleural Effusion Drained	0 (0.0%)	0 (0.0%)	N/A
Pericardiocentesis	0 (0.0%)	0 (0.0%)	N/A
Readmit for Effusion	2 (6.1%)	1 (5.6%)	1.000

Table 1.

- Patients receiving conventional and automated-clearance chest tubes had similar baseline characteristics and underwent CABG with similar numbers of total grafts and chest tubes.
- Although the automated-clearance chest tubes were smaller in caliber, the drainage profile was similar to that of the conventional chest tubes, and no chest tube-related complications were encountered as inpatient.

CONCLUSIONS

- With a very low occlusion rate (2.4%), no complications prior to chest tube removal, and a similar drainage profile as larger-caliber thoracostomy tubes, this automated-clearance 20 Fr chest tube system represents a safe and effective option for surgical drainage after routine cardiac surgery.
- In addition to CABG, use of this automated-clearance chest tube in patients with mitral valve, aortic valve, and aortic aneurysmal disease has also demonstrated good results, although further study is needed.

H. Wang, S. Bajaj, T. Obafemi, C. O'Donnell, S. Elde, J. Boyd

Figure 1.

- *Left*, conventional chest tube with significant clot burden.
- *Right*, 20 Fr automated-clearance chest tube. No obstruction and minimal clot burden noted.

REFERENCES

[1] Karimov et al. Incidence of chest tube clogging after cardiac surgery: a single-centre prospective observational study. Eur J Cardiothorac Surg 2013, 44:1029.

[2] Engelman et al. Guidelines for Perioperative Care in Cardiac Surgery: Enhanced Recovery After Surgery Society Recommendations. JAMA Surg 2019, 154:755.

Figure 2.

Although smaller in caliber, the automated-clearance chest tubes produced a similar drainage profile as conventional control chest tubes at all time points examined.

ACKNOWLEDGEMENTS

We thank Rhodalene Benjamin-Addy, Tiffany K. Koyano, and Kokil Bakshi for coordinating this study and assistance with data collection.

CONTACT INFORMATION

Jack H. Boyd, MD. jackboyd@stanford.edu